# Единый государственный экзамен по ФИЗИКЕ

# Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь. Число запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа  $\mathbb{N}$  1. Единицы измерения физических величин писать не нужно.

Ответ: 7,5 см. 37,5

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> без пробелов, запятых и других дополнительных символов в бланк ответов № 1.

Ответ: А Б Бланк

Ответ: 4 1 7 4 1

Ответом к заданию 13 является слово. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответов № 1.

Ответ: **вправо** 13 В П Р А В О Бланк

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u>, не разделяя числа пробелом, в бланк ответов № 1.

Ответ: (1,4 ± 0,2) н. 22 I , 40 , 2

Ответ к заданиям 28-32 включает в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, что ответ на каждое задание в бланках ответов №1 и №2 записан под правильным номером.

#### Желаем успеха!

#### Десятичные приставки

| Наимено | Обозначени | Множитель | Наимено | Обозначение | Множитель |
|---------|------------|-----------|---------|-------------|-----------|
| вание   | e          |           | вание   |             |           |
| гига    | Γ          | $10^{9}$  | санти   | С           | 10-2      |
| мега    | M          | $10^{6}$  | милли   | M           | 10-3      |
| кило    | К          | $10^{3}$  | микро   | MK          | 10-6      |
| гекто   | Γ          | $10^{2}$  | нано    | Н           | 10-9      |
| деци    | Д          | 10-1      | пико    | П           | 10-12     |

| Константы                               |                                                                                       |
|-----------------------------------------|---------------------------------------------------------------------------------------|
| число π                                 | $\pi = 3,14$                                                                          |
| ускорение свободного падения на Земле   | $g = 10 \text{ M/c}^2$                                                                |
| гравитационная постоянная               | $G = 6,7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{кг}^2$                       |
| универсальная газовая постоянная        | $R = 8,31 \; Дж/(моль \cdot K)$                                                       |
| постоянная Больцмана                    | $k = 1,38 \cdot 10^{-23}  \text{Дж/K}$                                                |
| постоянная Авогадро                     | $N_{ m A}$ $= 6 \cdot 10^{23}$ моль $^{-1}$                                           |
| скорость света в вакууме                | $c = 3 \cdot 10^8 \mathrm{m/c}$                                                       |
| коэффициент пропорциональности в законе | $u = \frac{1}{1} - 0 \cdot 10^9 H$                                                    |
| Кулона                                  | $\kappa = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9  H$                              |
|                                         | $\cdot M^2/Kn^2$                                                                      |
| модуль заряда электрона                 | ,                                                                                     |
| (элементарный электрический заряд)      | $a = 1.6 \cdot 10^{-19}  \text{Kz}$                                                   |
| постоянная Планка                       | $q = 1.6 \cdot 10^{-19}  K_{\text{I}}$<br>$h = 6.6 \cdot 10^{-34}  \text{Дж} \cdot c$ |

| Соотношение между различными единицами |                                       |
|----------------------------------------|---------------------------------------|
| температура                            | $0 \text{ K} = -273 ^{\circ}\text{C}$ |
| атомная единица массы                  | $1 a. e.м. = 1,66 \cdot 10^{-27} $ кг |
| 1 атомная единица массы эквивалента    | 931 МэВ                               |
| 1 электронвольт                        | $I \ni B = 1,6 \cdot 10^{-19} $ Джс   |





Ответ:

электрона 9,1 ·  $10^{-31}$  кг  $\approx 5,5 \cdot 10^{-4}$  а.е.м. протона 1,673 ·  $10^{-27}$  кг  $\approx 1,007$  а.е.м. нейтрона 1,675 ·  $10^{-27}$  кг  $\approx 1,008$  а.е.м.

**Плотность** подсолнечного масла  $900 \text{ кг/м}^3$  воды  $1000 \text{ кг/м}^3$ 

алюминия 2700 кг/м<sup>3</sup> древесины (сосна) 400 кг/м<sup>3</sup> железа 7800 кг/м<sup>3</sup> керосина 800 кг/м<sup>3</sup> ртути 13600 кг/м<sup>3</sup>

#### Удельная теплоёмкость

воды 4,2·10³ Дж/(кг·К)

алюминия 900 Дж/(кг·К)

льда  $2,1\cdot 10^3$  Дж/(кг·К)

меди 380 Дж/(кг⋅К)

железа 460 Дж/(кг·К)

чугуна 800 Дж/(кг·К)

свинца 130 Дж/(кг∙К)

#### Удельная теплота

парообразования воды  $2,3 \cdot 10^6 \, \text{Дж/K}$ 

плавления свинца 2,5 · 10<sup>4</sup> Дж/К

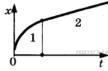
плавления льда  $3.3 \cdot 10^5 \, \text{Дж/K}$ 

# **Нормальные условия:** давление $-10^5$ Па, температура -0 °C

# Молярная масса

| азота    | 28⋅ 10-3 кг/моль          | гелия            | 4·10-3 кг/моль              |
|----------|---------------------------|------------------|-----------------------------|
| аргона   | 40∙ 10⁻³ кг/моль          | кислорода        | 32·10-3 кг/моль             |
| водорода | $2 \cdot 10^{-3}$ кг/моль | лития            | 6·10 <sup>-3</sup> кг/моль  |
| воздуха  | 29∙ 10-3 кг/моль          | неона            | 20·10-3 кг/моль             |
| воды     | 18·10-3 кг/моль           | углекислого газа | 44·10 <sup>-3</sup> кг/моль |
|          |                           |                  |                             |

#### Часть 1


Ответами к заданиям 1-24 являются слово, число или последовательность цифр или чисел. Запишите ответ в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ  $\mathfrak{N}$  1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не

| 1 | Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Чему равно центростремительное ускорение автомобиля? (Ответ                                                                                                                                                                           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | дайте в метрах в секунду в квадрате.)                                                                                                                                                                                                                                                                             |
|   | Ответ: м/c <sup>2</sup>                                                                                                                                                                                                                                                                                           |
| 2 | Две силы 3 H и 4 H приложены к одной точке тела, угол между векторами сил равен 90°. Чему равен модуль равнодействующей сил? (Ответ дайте в ньютонах.)                                                                                                                                                            |
|   | Ответ: Н                                                                                                                                                                                                                                                                                                          |
| 3 | Тело массой 2 кг, брошенное с уровня земли вертикально вверх со скоростью 10 м/с, упало обратно на землю. Какой потенциальной энергией обладало тело относительно поверхности земли в верхней точке траектории? Сопротивлением воздуха пренебречь. (Ответ дайте в джоулях.)                                       |
|   | Ответ: Дж                                                                                                                                                                                                                                                                                                         |
| 4 | Пустой цилиндрический стеклянный стакан плавает в воде, погрузившись на половину своей высоты. Дно стакана при плавании горизонтально, плотность стекла 2500 кг/м3. Чему равно отношение внутреннего объёма стакана к его наружному объёму? Ответ представьте в виде десятичной дроби, округлив до десятых долей. |
|   |                                                                                                                                                                                                                                                                                                                   |





Бусинка скользит по неподвижной горизонтальной спице. На графике изображена зависимость координаты бусинки от времени. Ось Ох параллельна спице. На основании графика выберите два верных утверждения о движении бусинки.



- 1) На участке 1 модуль скорости уменьшается, а на участке 2 увеличивается.
- 2) На участке 1 модуль скорости увеличивается, а на участке 2 остаётся неизменным.
  - 3) На участке 2 проекция ускорения  $a_x$  бусинки положительна.
- 4) На участке 1 модуль скорости уменьшается, а на участке 2 остаётся неизменным.
  - 5) Направление движения бусинки не изменялось.

|        | l |
|--------|---|
| _      | l |
| Ответ: | l |
| Ответ: | l |
|        |   |

Груз массой m, подвешенный к пружине, совершает колебания с периодом Т и амплитудой А. Что произойдет с периодом колебаний, максимальной потенциальной энергией пружины и частотой колебаний, если при неизменной амплитуде уменьшить массу груза?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась;
- 2) уменьшилась;
- 3) не изменилась..

| Период колебаний | Максимальная потенциальная энергия пружины | Частота колебаний |
|------------------|--------------------------------------------|-------------------|
|                  |                                            |                   |

| Ответ: |
|--------|
|--------|

| 1 | 2 |
|---|---|
| 0 | t |

| ١ | Шарик висит на нити. В нем застревает пуля, летящая горизонтально, в  |
|---|-----------------------------------------------------------------------|
| _ | результате чего нить отклоняется на некоторый угол. Как изменятся при |
|   | увеличении массы шарика следующие три величины: импульс, полученный   |
|   | шариком в результате попадания в него пули; скорость, которая будет у |
|   | шарика тотчас после удара; угол отклонения нити? Пуля застревает очен |
|   | быстро. Для каждой величины определите соответствующий характер       |
|   | изменения:                                                            |

- 1) увеличится;
- 2) уменьшится;
- 3) не изменится.

Ответ:

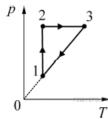
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Импульс, полученный шариком в результате попадания в него пули | Скорость, которая будет у шарика тотчас после удара | Угол отклонения<br>нити |
|----------------------------------------------------------------|-----------------------------------------------------|-------------------------|
|                                                                |                                                     |                         |

| 8 | Во сколько раз изменяется давление идеального газа при уменьшении                 |
|---|-----------------------------------------------------------------------------------|
|   | объёма идеального газа в 2 раза и увеличении его абсолютной температуры в 4 раза? |
|   | Ответ:                                                                            |

| 9 | Давление постоянного количества идеального газа падает с уменьшением               |
|---|------------------------------------------------------------------------------------|
|   | объёма по линейному закону от значения $4\cdot 105$ Па до значения $2\cdot 105$ Па |
|   | Объём газа при этом уменьшается от 3,5 м3 до 1,5 м3. Найдите работу,               |
|   | совершённую над газом внешними силами. Ответ выразите в кДж.                       |

| Ответ: |  | кД |
|--------|--|----|
|--------|--|----|


| 10 | Давление пара в помещении при температуре 5 °C равно 756 Па. Давление |
|----|-----------------------------------------------------------------------|
| 10 | насыщенного пара при этой же температуре равно 880 Па. Какова         |
|    | - насыщенного пара при этой же температуре равно 660 гга. Какова      |

относительная влажность воздуха? (Ответ дать в процентах, округлив до целых.)

Ответ: %

11

В результате эксперимента по изучению циклического процесса, проводившегося с некоторым постоянным количеством одноатомного газа, который в условиях опыта можно было считать идеальным, получилась зависимость давления р от температуры Т, показанная на графике. Выберите два утверждения, соответствующие результатам этого эксперимента, и запишите в таблицу цифры, под которыми указаны эти утверждения.



- 1) В процессе 1–2 газ совершал положительную работу.
- 2) В процессе 2–3 газ совершал положительную работу.
- 3) В процессе 3–1 газ совершал отрицательную работу.
- 4) Изменение внутренней энергии газа на участке 1–2 было больше изменения внутренней энергии газа на участке 2–3.
  - 5) В процессе 3–1 работа не совершалась.

| Ответ: |  |  |
|--------|--|--|
|--------|--|--|

На рисунке показан график изменения температуры Т вещества при постоянном давлении по мере выделения им количества теплоты Q. В начальный момент времени вещество находилось в газообразном состоянии. Какие участки графика соответствуют кристаллизации вещества и остыванию жидкости? Установите соответствие между тепловыми процессами и участками графика.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.



#### ПРОЦЕССЫ

А) Кристаллизация вещества

Б) Остывание жидкости

1) 1

2) 2 3) 3

4) 4

| Ответ: | A | Б |
|--------|---|---|
|        |   |   |

13 Линии индукции однородного магнитного поля пронизывают рамку площадью 0,5 м² под углом 30° к её поверхности, создавая магнитный поток, равный 0,2 Вб. Чему равен модуль вектора индукции магнитного поля? (Ответ дать в теслах.)

Ответ:

Резистор 1 с электрическим сопротивлением 3 Ом и резистор 2 с электрическим сопротивлением 6 Ом включены последовательно в цепь постоянного тока. Чему равно отношение количества теплоты, выделяющегося на резисторе 1, к количеству теплоты, выделяющемуся на резисторе 2 за одинаковое время?

Ответ: \_\_\_\_\_



ТРЕНИРОВОЧНЫЙ КИМ № 181015

Число витков в первичной обмотке трансформатора в 2 раза больше числа витков в его вторичной обмотке. Какова амплитуда колебаний напряжения на концах вторичной обмотки трансформатора в режиме холостого хода при амплитуде колебаний напряжения на концах первичной обмотки 50 В? (Ответ дать в вольтах.)

Ответ: В

Школьник проводил эксперименты, соединяя друг с другом различными способами батарейку и пронумерованные лампочки. Сопротивление батарейки и соединительных проводов было пренебрежимо мало. Измерительные приборы, которые использовал школьник, можно считать идеальными. Сопротивление всех лампочек не зависит от напряжения, к которому они подключены. Ход своих экспериментов и полученные результаты школьник заносил в лабораторный журнал. Вот что написано в этом журнале.

Опыт A). Подсоединил к батарейке лампочку № 1. Сила тока через батарейку 2 A, напряжение на лампочке 8 B.

Опыт Б). Подключил лампочку № 2 последовательно с лампочкой № 1. Сила тока через лампочку №1 равна 1 А, напряжение на лампочке № 2 составляет 4 В.

Опыт В). Подсоединил параллельно с лампочкой № 2 лампочку № 3. Сила тока через лампочку № 1 примерно 1,14 A, напряжение на лампочке № 2 примерно 3,44 B.

Исходя из записей в журнале, выберите два правильных утверждения и запишите в таблицу цифры, под которыми указаны эти утверждения.

- 1) лампочки № 1, № 2 и № 3 одинаковые
- 2) лампочки № 1 и № 2 одинаковые
- 3) лампочки № 2 и № 3 одинаковые
- 4) сопротивление лампочки № 3 меньше сопротивления лампочки № 1
- 5) ЭДС батарейки равна 8 В

Ответ:

| 17 | Установите взаимосвязь между физическим явлением и законом, его |
|----|-----------------------------------------------------------------|
|    | описывающим                                                     |

К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

## ИЗОПРОЦЕСС

#### ФИЗИЧЕСКОЕ ЯВЛЕНИЕ

- А) Взаимное притяжение тел
- 1) Закон сохранения импульса

2) Закон сохранения механической

- Б) Наличие силы, действующей на проводник с током в магнитном поле
- 3) Закон Ампера

энергии

4) Закон всемирного тяготения

Ответ:

18 Пучок света переходит из стекла в воздух. Частота световой волны равна v скорость света в стекле равна v, показатель преломления стекла относительно воздуха равен n. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

## ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

#### ФОРМУЛЫ

- А) Длина волны света в стекле
- 1)  $\frac{v}{n}$ 2)  $\frac{v}{n}$
- Б) Длина волны света в воздухе
- 3)  $\frac{\overline{v}}{v}$
- 4)  $\frac{v}{v}$

Ответ



| 19 | Ядро $^{237}$ <sub>93</sub> Np, испытав серию α- и β-распадов, превратилось в ядро $^{209}$ <sub>83</sub> Bi. |
|----|---------------------------------------------------------------------------------------------------------------|
|    | Определите суммарное число α- и β-распадов.  Ответ:                                                           |
|    |                                                                                                               |

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

20 Поток фотонов с энергией 15 эВ выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых в 2 раза меньше работы выхода. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов? (Ответ дать в электронвольтах.)

Ответ: эВ

21

Определите, как в атоме водорода меняется модуль силы электрического взаимодействия электрона с ядром и его полная энергия при переходе с более высокой стационарной орбиты на более низкую (т.е. с орбиты с большим номером n на орбиту с меньшим n).

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

| Модуль силы электрического взаимодействия |                          |
|-------------------------------------------|--------------------------|
| электрона с ядром                         | Полная энергия электрона |
|                                           |                          |
|                                           |                          |

Ответ:

| A | Б |
|---|---|
|   |   |

| 22 | Из куска тонкого медного провода длиной 2 м собираются согнуть        |
|----|-----------------------------------------------------------------------|
|    | окружность. Предварительно вычисляют диаметр окружности с помощью     |
|    | калькулятора и получают на экране число 0,6369426. Чему будет равен   |
|    | диаметр окружности, если точность измерения длины провода равна 1 см? |
|    | (Ответ дайте в метрах, значение и погрешность запишите слитно без     |
|    | пробела.)                                                             |
|    |                                                                       |

Ответ:

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

- Необходимо собрать экспериментальную установку, с помощью которой можно измерить сопротивление резистора. Для этого школьник взял исследуемый резистор, набор электрических проводов и амперметр. Какие два предмета из приведённого ниже перечня оборудования необходимо дополнительно использовать для проведения этого эксперимента?
  - 1) второй амперметр
  - 2) резистор с известным сопротивлением
  - 3) вольтметр
  - 4) конденсатор
  - 5) источник напряжения

|        | 1 | l |
|--------|---|---|
|        | 1 | l |
| _      | 1 | l |
| Ответ: | 1 | l |
|        | 1 | l |

- **24** Выберите два типа объектов, которые присутствуют главным образом в диске нашей Галактики.
  - 1) Магеллановы облака
  - 2) рассеянные звёздные скопления
  - 3) квазары
  - 4) шаровые звёздные скопления
  - 5) межзвёздный газ

| Ответ: |  |
|--------|--|
|        |  |



#### Часть 2

Ответом к заданиям 25–27 является число. Запишите это число в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

| 25 | Автомобиль, двигаясь по горизонтальной дороге, совершает поворот по дуге окружности. Каков минимальный радиус этой окружности при |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
|    | <sup>1</sup> дуге окружности. Каков минимальныи радиус этои окружности при                                                        |
|    | коэффициенте трения автомобильных шин о дорогу 0,4 и скорости                                                                     |
|    | автомобиля 10 м/с? Ответ приведите в метрах                                                                                       |

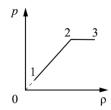
Ответ: м

При температуре 10°С и давлении 10<sup>5</sup> Па плотность газа равна 2,5 кг/м<sup>3</sup>. Какова молярная масса газа? Ответ выразите в г/моль и округлите до целых.

Ответ: \_\_\_\_ г/моль

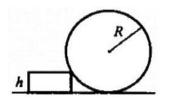
27

Плоская монохроматическая световая волна с частотой 8,0·10<sup>14</sup> Гц падает по нормали на дифракционную решетку. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 21 см. Дифракционная картина наблюдается на экране в задней фокальной плоскости линзы. Расстояние между ее главными максимумами 1-го и 2-го порядков равно


18 мм. Найдите период решетки. Ответ выразите в микрометрах (мкм), округлив до десятых. Считать для малых углов ( $\phi << 1$  в радианах)  $tg\phi = \sin \phi = \phi$ .

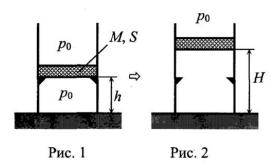
Ответ: \_\_\_\_\_ мкм

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, что каждый ответ записан в строке с номером соответствующего задания

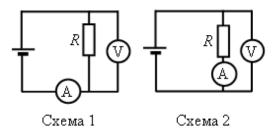

Для записи ответов на задания 28–32 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (28, 29 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

28 На графике представлена зависимость давления неизменной массы идеального газа от его плотности. Опишите, как изменяются в зависимости от плотности температура и объем газа в процессах 1–2 и 2–3.



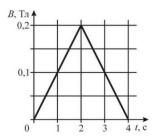

Полное правильное решение каждой из задач 29–32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

29 Колесо радиусом R = 1 м и массой m = 5 кг упирается в ступеньку высотой h = 20 см. Проскальзывания между колесом и ступенькой нет. Определите минимальную силу, которую надо приложить к колесу, чтобы вкатить его на ступеньку.






В вертикальном сосуде с гладкими стенками, опираясь на выступы, лежит поршень массой M и площадью основания S. Под поршнем находится одноатомный идеальный газ, сверху сосуд открыт в атмосферу, расстояние от дна сосуда до поршня h (рис. 1). Сосуд с газом медленно нагревают, и поршень поднимается на высоту H (рис.2). Какое количество теплоты Q было сообщено газу, если начальное давление газа  $p_0$  равно внешнему атмосферному, тепловыми потерями можно пренебречь.




Одни и те же элементы соединены в электрическую цепь сначала по схеме 1, а затем по схеме 2 (см. рисунок). Сопротивление резистора равно **R**, сопротивление амперметра **R/100**, сопротивление вольтметра **9R**. В первой схеме показания амперметра равны **I**<sub>1</sub>. Каковы его показания во второй схеме? Внутренним сопротивлением источника и сопротивлением проводов пренебречь.



Намотанная на каркас проволочная катушка сопротивлением R = 2 Ом, выводы которой соединены друг с другом, помещена в однородное магнитное поле, линии индукции которого перпендикулярны плоскости витков катушки. Модуль вектора магнитной индукции В поля изменяется с течением времени t так, как показано на графике. К моменту времени τ =

1с через катушку протек электрический заряд q = 5 мКл. Сколько витков содержит катушка, если все витки одинаковые и имеют площадь  $S=100 \ \text{cm}^2?$ 



#### О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта «ЕГЭ 100 баллов» <a href="https://vk.com/ege100ballov">https://vk.com/ege100ballov</a> и безвозмездно распространяется для любых некоммерческих образовательных целей.

# Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: <a href="https://vk.com/topic-10175642">https://vk.com/topic-10175642</a> 39008096 (также доступны другие варианты для скачивания)

| СОСТАВИТЕЛЬ ВАРИАНТА:      |                                         |  |  |
|----------------------------|-----------------------------------------|--|--|
| ФИО:                       | Травенко Никита Григорьевич             |  |  |
| Предмет:                   | Физика                                  |  |  |
| Стаж:                      | 5 лет                                   |  |  |
| Регалии:                   | Курсы подготовки школьников к ЕГЭ и ОГЭ |  |  |
| Аккаунт ВК:                | https://vk.com/lancmanschool            |  |  |
| Сайт и доп.<br>информация: | http://lancmanschool.ru/kursi-ege/      |  |  |



